Oligomeric Amyloid-? Peptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface
Main Article Content
Abstract
Introduction: Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB) plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (A?) in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation.
Methods: Because of recent advances in the biological applications of atomic force microscopy (AFM), we applied AFM with cantilever tips bio-functionalized by sLex in combination with the advanced immunofluorescent microscopy (QIM) to study the direct effects of A?42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs) and find a possible way to attenuate these effects.
Results: QIM results showed that A?42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that A?42 increased the probability of cell adhesion with sLex-coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug. Surprisingly, the apparent rupture force of sLex-selectin bonding was significantly lower after treatment with A?42, as compared with the control (i.e. no treatment). Similar results were also obtained when cells were treated with latruculin A (F-actin-disrupting drug). These results suggest that the decrease in the apparent rupture force of sLex-selectin bonding is the consequence of the dissociation of adhesion between the cytoskeleton and the bilayer membrane induced by A?42. The major causes of excess mortality in the first group were neoplams (30.6%), hypertension (23.8%), and myocardial infarction (22.6%). The effects of radiation influenced mortality in the second group were 2-2.5 times lower than the first group.
Conclusion: The studies of the effects of A?42 on the adhesion properties of cerebral endothelial cells and how pharmacological agents (e.g. statin) counteract these effects should prove to provide insights into the mechanism of inflammation in Alzheimer’s brains and the design of therapeutic treatments of the disease.
Article Details
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.