Proximity Utilizing Biotinylation of Nuclear Proteins in vivo
Main Article Content
Abstract
Introduction. The human genome consists of roughly 30,000 genes coding for over 500,000 different proteins, of which more than 10,000 proteins can be produced by the cell at any given time (the cellular “proteome”). It has been estimated that over 80% of proteins do not operate alone, but in complexes. These protein-protein interactions (PPI) are regulated by several mechanisms. For example, post-translational modifications (methylation, acetylation, phosphorylation, or ubiquitination) or metal-binding can lead to conformational changes that alter the affinity and kinetic parameters of the interaction. Many PPIs are part of larger cellular networks of interactions or interactomes. Indeed, these interactions are at the core of the entire interactomics system of any living cell, and so, aberrant PPIs are the basis of multiple diseases, such as neurodegenerative diseases and cancer. The objective of this study was to develop a method of monitoring protein-protein interactions and proximity dependence in vivo.
Methods. The biotin ligase BirA was fused to the protein of interest, and the Biotin Acceptor Peptide (BAP) was fused to an interacting partner to make the detection of its biotinylation possible by western blot or mass spectrometry.
Results. Using several experimental systems (BirA.A + BAP.B), we showed that the biotinylation is interaction/proximity dependent. Here, A and B are the next nuclear proteins used in the experiments – 3 paralogues of heterochromatin protein HP1a (CBX5), HP1b (CBX1), HP1g (CBX3), wild type and transcription mutant factor Kap1, translesion DNA polymerase PolH and E3, ubiquitin ligase RAD18, Proliferative Cell Nuclear Antigen (PCNA), ubiquitin Ub, SUMO-2/3, different types and isoforms of histones H2A, H2Az, H3.1, H3.3, CenpA, H2A.BBD, and macroH2A. The variant of this approach is termed PUB-NChIP (Proximity Utilizing Biotinylation with Native Chromatin Immuno-precipitation) and is designed to purify and study the protein composition of chromatin in proximity to the nuclear protein of interest. Using the RAD18 protein as a model, we demonstrated that the RAD18-proximal chromatin is enriched in some H4 acetylated species. Moreover, the RAD18-proximal chromatin containing a replacement histone H2Az has a different pattern of H4 acetylation.
Conclusion. Progress in the last decade in cancer drug therapy has led us to the conclusion that the nucleus of eukaryotic cells is an active site for many cellular processes important to the development of cancer. These processes include changes in genetic and epigenetic landscape (e. g. methylation of DNA, modification of histones) and the expression levels of transcription factors, which regulates gene products (e.g. hypoxia-inducible factor 1? (HIF-1?) in chronic anemia, etc.) where protein-protein interactions play important role. Understanding the nature of protein-protein interactions may improve design strategies for small-molecule PPI modulators. PPI assay technologies that closely reflect physiological conditions hold the key to developing specific anti-cancer drugs.
Article Details
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.