Metagenomic Analysis of Koumiss in Kazakhstan
##plugins.themes.bootstrap3.article.main##
Аннотация
Introduction. Koumiss is a low-alcohol product made from fermented mare's milk, which is popular in Kazakhstan, Russia, and other countries of Central Asia, China, and Mongolia. Natural mare's milk is fermented in symbiosis of two types of microorganisms (lactobacteria and yeast). Koumiss’s microbial composition varies depending on the geographical, climatic, and cultural conditions. Based on a phenotypic characteristic from samples, Wu, R. and colleagues identified the following bacteria isolated in inner Mongolia, an autonomous region of China: L.casei, L.helveticus, L.plantarum, L.coryniformis subsp. coryniformis, L.paracasei, L.kefiranofaciens, L.curvatus, L.fermentum, and W.kandleri. Studies of the yeast composition in koumiss also showed significant variations. Thus, there were Saccharomyces unisporus related 48.3% of isolates, to Kluyveromyces marxianus (27.6%), Pichia membranaefaciens (15.0%), and Saccharomyces cerevisiae (9.2%) from 87 isolated yeast cultures. The purpose of this study was to examine the bacterial composition in koumiss.
Methods. To extract DNA, 1.8 ml of fermented milk was centrifuged to generate a pellet, which was suspended in 450 µl of lysis buffer P1 from the Powerfood Microbial DNA Isolation kit (MoBio Laboratories Inc, USA). Amplification of the microflora was used to determine the composition of a fragment of the gene 16S rRNA and ITS1. Plasmid library with target insertion was obtained on the basis of height copy plasmid vectors producing high pGem-T. The definition of direct nucleotide sequencing was performed by the method of Sanger using a set of "BigDye Terminanor v 3.1 Cycle sequencing Kit with automatic genetic analyzer ABI 3730xl (Applied Biosystems, USA). Informax Vector NTI Suite 9, Sequence Scanner v 1.0 software package used for the analysis.
Results. Our studies showed that in the most samples of koumiss isolated from Akmola region (Central Kazakhstan) prevailed the following bacteria species: Lactobacillus diolivorans, Lactobacillus acidophilus, L. casei, L. curvatus yeast genus Torula (62.4%) and Saccharomyces cerevisiae (37.6%).
Conclusion. Thus, the first metagenomic research of koumiss, which was conducted in Kazakhstan, showed significant variations in microbial composition.
##plugins.themes.bootstrap3.article.details##
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.