In vivo Biotinylation Based Method for the Study of Protein-Protein Proximity in Eukaryotic Cells
##plugins.themes.bootstrap3.article.main##
Аннотация
Introduction: The spatiotemporal order plays an important role in cell functioning and is affected in many pathologies such as cancer and neurodegenerative diseases. One of the ultimate goals of molecular biology is reconstruction of the spatiotemporal structure of a living cell at the molecular level. This task includes determination of proximities between different molecular components in the cell and monitoring their time- and physiological state-dependent changes. In many cases, proximity between macromolecules arises due to their interactions; however, the contribution of dynamic self-organization in generation of spatiotemporal order is emerging as another viable possibility. Specifically, in proteomics, this implies that the detection of protein-protein proximity is a more general task than gaining information about physical interactions between proteins, as it could detail aspects of spatial order in vivo that are challenging to reconstitute in binding experiments in vitro.
Methods: In this work, we have developed a method of monitoring protein-protein proximity in vivo. For this purpose, the BirA was fused to one of the interaction partners, whereas the BAP was modified to make the detection of its biotinylation possible by mass spectrometry.
Results: Using several experimental systems, we showed that the biotinylation is interaction dependent. In addition, we demonstrated that BAP domains with different primary amino acid structures and thus with different molecular weights can be used in the same experiment, providing the possibility of multiplexing. Alternatively to the changes in primary amino acid structure, the stable isotope format can also be used, providing another way to perform multiplexing experiments. Finally, we also demonstrated that our system could help to overcome another limitation of current methodologies to detect protein-protein proximity. For example, one can follow the state of a protein of interest at a defined time after its interaction with another protein has occurred. This application should be particularly useful for studying multistep intracellular processes, where the proximities between proteins and protein properties typically changed in a sequential manner.
Conclusion: This approach has promised in adding temporal dimension in addition to helping reconstruct cell topology in space.
##plugins.themes.bootstrap3.article.details##
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.