Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health
##plugins.themes.bootstrap3.article.main##
Аннотация
Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG’s are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health.
Until now, methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-?-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance.
Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under “One Health”, beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID) and reach the MDG.
##plugins.themes.bootstrap3.article.details##
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.
Библиографические ссылки
United Nations. United Nations Millennium Development Goals. http://www.un.org/millenniumgoals/reports.shtml. Accessed July 27, 2013.
Taylor LH, Latham SM, Woolhouse MEJ. Risk factors for human disease emergence. Phil Trans R Soc Lond B. 2001;356(1411):983-989.
Woolhouse MEJ, Taylor LH, Haydon DT. Population biology of multihost pathogens. Science. 2001;292(5519):1109-1112.
Venn-Watson S, Stamper A, Rowles T. Thinking outside the terrestrial box: How high-priority, emerging, and zoonotic marine mammal pathogens reflect those of human pathogens. Eco Health. 2011;7.
Karesh WB, Dobson A, Lloyd-Smith JO, et al. Ecology of zoonoses: Natural and unnatural histories. Lancet. 2012;380(9857):1936-1945.
American Veterinary Medical Association. One Health. https://www.avma.org/KB/Resources/Reference/Pages/One-Health94.aspx. Accessed May 23, 2013.
One Health Initiative. www.onehealthinitiative.com. Accessed October 10, 2013.
World Health Organization. WHO World Health Day. http://www.who.int/world-health-day/2011/en/index.html. Accessed August 11, 2013.
Thoen CO, Steele JH, Gilsdorf MJ. Mycobacterium bovis infection in animals and humans, 2nd edition. Emerg Infect Dis. 2006;12(8):1306.
Castanheira M, Deshpande LM, Farrell SE, Shetye S, Shah N, Jones RN. Update on the prevalence and genetic characterization of NDM-1-producing Enterobacteriaceae in Indian hospitals during 2010. Diagn Microbiol Infect Dis. 2013;75(2):210-213.
Acar JF, Moulin G, Page SW, Pastoret PP. Antimicrobial resistance in animal and public health: Introduction and classification of antimicrobial agents. Rev Sci Tech. 2012;31(1):15-21.
US Food and Drug Administration. 2010 summary report on antimicrobials sold or distributed for use in food producing animals. 2011; http://www.fda.gov/downloads/ForIndustry/UserFees/animalDrugUserFeeActADUFA/M277657.pdf. Accessed August 15, 2013.
Marshall BM, Levy S. Food animals and antibiotics: Impacts on human health. Clin Microbiol Rev. 2011;24(4):718-733.
Aarestrup FM, Jensen VF, Emborg HD, Jacobsen E, Wegener HC. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res. 2010;71(7):726-733.
Ansari F, Molana H, Goossens H, Davey P. ESAC II Hospital Care Study Group. Development of standardized methods for analysis of changes in antibacterial use in hospitals from 18 European countries: the European Surveillance of Antimicrobial Consumption (ESAC) longitudinal survey. Antimicrob Chemother. 2010;65(12):2685-2691.
Wright GD. Antibiotic resistance in the environment: A link to the clinic. Curr Opin Microbiol. 2010;13(5):589-594.
D'Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457-461.
Aidara-Kane A. Containment of antimicrobial resistance due to use of antimicrobial agents in animals intended for food: WHO perspective. Rev Sci Tech. 2012;31(1):277-287.
Infective Diseases Society of America (IDSA). Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011;52(5):S397-428.
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134.
Sharma P, Towse A. New drugs to tackle antimicrobial resistance: analysis of EU policy options. http://www.ohe./org/publications/article/new-drugs-totackle-2012resistance-5.cfm. Accessed July 9, 2013.
Kaitin KI. Deconstructing the drug development process: The new face of innovation. Clin Pharmacol Ther. 2010;87(3):356-361.
The NIH Common Fund. Common Fund Initiative. http://nihroadmap.nih.gov/initiatives.asp. Accessed May 16, 2013.
Taubes G. The bacteria fight back. Science. 2008;321(5887):356-361.
Infectious Diseases Society of America. The 10×20 Initiative: Pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010;50(8):1081-1083.
Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155-164.
Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE. Trends in antimicrobial drug development: Implications for the future. Clin Infect Dis. 2004;38(9):1279-1286.
Braine T. Race against time to develop new antibiotics. Bull World Health Organ. 2011;89(2):88-89.
Butler MS, Cooper MA. Antbiotics in the clinical pipeline in 2011. J Antibiot (Tokyo). 2011;64(6):413-425.
Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1-12.
Tang H, Huang T, Jing J, Shen H, Cui W. Effect of procalcitonin guided treatment in patients with infections: A systematic review and meta-analysis. Infection. 2009;37(6):497-507.