Frequency of NAT2 and GSTP1 polymorphisms in the Kazakh population
##plugins.themes.bootstrap3.article.main##
Аннотация
Introduction: Phase II xenobiotic biotransformation enzymes perform detoxification of hydrophilic and often toxic Phase I products by glutathionetransferase (GST), UDP-glucuronosyltransferase (UDF), N-acetyltransferase (NAT) families and other enzymes. GST protein family metabolizes a large number of electrophilic xenobiotics, including drugs, by conjugating them with glutathione. Arylamine-N-acetyltransferase (NAT) catalyzes the acetylation of the aromatic and heterocyclic amines.
Materials and methods: The current study has assessed the frequencies of NAT2 and GSTP1 genes polymorphisms in 326 healthy individuals from different regions of Kazakhstan by using Real-Time PCR and direct sequencing methods.
Results: Allele frequencies were derived for NAT2*5 (0.54) and GSTP1 (0.27). GSTP1 alleles were in Hardy – Weinberg equilibrium (p > 0.05), while NAT2*5 (p = 0.00) were not. The population differences between North, Northeast and South Kazakhstan regions were determined. Statistically significant differences in the frequency of genotypes were not found.
Conclusion: Allelic polymorphisms of NAT2*5 and GSTP1 genes vary widely in different populations. Kazakh population was significantly different from Asian, Caucasoid, African-American and Hispanic ones by NAT2*5 and GSTP1 genes. Allelic variants of the NAT2*5 were detected with a low frequency in Asian populations. Allelic frequency in other world populations varies from 30 to 50%. The differences between Kazakh (0.54) and the world population were statistically significant (p < 0.05). The frequency of GSTP1 (rs1695) in the African American population is 42%. The frequency of GSTP1 in Asian populations varies from 11% to 23%, in Caucasoid populations it is about 30%. The differences between Kazakh population (0.27) and other populations selected from the literature were statistically significant (p < 0.05).
The study of mutations in GSTP1 and NAT2 genes is necessary to assess the risk of the development of various diseases, such as cancer. Information on allelic polymorphisms also might be useful for personalized drug prescription for such drugs as cyclophosphamide, cisplatin, methotrexate, isoniazid, pyrazinamide, and rifampin.##plugins.themes.bootstrap3.article.details##
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.